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ABSTRACT

Convection intensity and longevity is highly dependent on the surrounding environment. Ensemble

sensitivity analysis (ESA), which quantitatively and qualitatively interprets impacts of initial conditions on

forecasts, is applied to very short-term (1–2 h) convective-scale forecasts for three cases during the

Mesoscale Predictability Experiment (MPEX) in 2013. The ESA technique reveals several dependencies

of individual convective storm evolution on their nearby environments. The three MPEX cases are sim-

ulated using a previously verified 36-member convection-allowingmodel (Dx5 3 km) ensemble created via

the Weather Research and Forecasting (WRF) Model. Radar and other conventional observations are

assimilated using an ensemble adjustment Kalman filter. The three cases include a mesoscale convective

system (MCS) and both nontornadic and tornadic supercells. Of the many ESAs applied in this study, one

of the most notable is the positive sensitivity of supercell updraft helicity to increases in both storm inflow

region deep and shallow vertical wind shear. This result suggests that larger values of vertical wind shear

within the storm inflow yield higher values of storm updraft helicity. Results further show that the supercell

storms quickly enhance the environmental vertical wind shear within the storm inflow region. Application

of ESA shows that these storm-induced perturbations then affect further storm evolution, suggesting the

presence of storm–environment feedback cycles where perturbations affect future mesocyclone strength.

Overall, ESA can provide insight into convection dependencies on the near-storm environment.

1. Introduction

Convection-allowing models (CAMs) can improve pre-

dictions of the organization and evolution of convection

(e.g., Kain et al. 2006, 2008; Clark et al. 2010a,b). Reliable

forecasts of deep convection are needed to improve

warnings for associated high-impact meteorological phe-

nomena (e.g., damaging winds, flash flooding, hail, torna-

does; Stensrud et al. 2009, 2013). The practical predictability

of such events is largely dependent on having accurate ini-

tial conditions and small model error (Zhang et al. 2007;

Cintineo and Stensrud 2013; Johnson et al. 2014; Johnson

andWang2016).Results fromCintineoandStensrud (2013)

suggest that near-storm environments must be well repre-

sented by the models to ensure reasonable forecast accu-

racy. Thus, impacts of long-lived convection on the

environment (i.e., upscale feedbacks) must be well depicted

in model forecasts. In this study, the dependencies of con-

vection evolution on the surrounding environment are

evaluated using an ensemble sensitivity analysis technique

(Torn and Hakim 2008).

Upscale feedbacks on the surrounding environment

by convective storms are described in many past studies

(Maddox 1980; Fritsch and Maddox 1981a,b; Brooks

et al. 1994). Most studies use numerical models to
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present these impacts (e.g., Maddox 1980; Fritsch and

Maddox 1981b; Brooks et al. 1994; Stensrud 1996;

Stensrud and Anderson 2001), while some studies use

observations (e.g., Fritsch and Maddox 1981a; Parker

2014). In the storm-relative local mesoscale environment,

Brooks et al. (1994) note the enhancement of convective

available potential energy (CAPE) and storm-relative

helicity (SRH) within the storm’s inflow region. Stensrud

(1996) shows low-level inflow wind speeds increase with

persistent convection. This study uses CAMs to further

describe the impacts convection has on the environmen-

tal vertical wind shear and low-level storm inflow. Con-

vective perturbations are described in terms of distance

from storms of interest and temporally, while ensemble

sensitivity analysis is utilized to reveal the significance of

storm-induced vertical wind shear and inflow changes on

further convection evolution.

This study focuses on specific convective events within

a 3-day period from 29 to 31 May 2013 where the near-

storm environments were verified against Mesoscale

Predictability Experiment (MPEX; Weisman et al. 2015;

Trappet al. 2016;Coniglio et al. 2016;Hitchcock et al. 2016)

upsondes (Kerr et al. 2017). On 29 May a linear system is

featured that grows into a mesoscale convective system

(MCS), beginning in the Texas Panhandle andmoving into

western Oklahoma (Fig. 1a). This case has substantial cold

pool growth that drives the convection evolution. A non-

tornadic supercell in centralOklahomaon 30May (Fig. 1b)

provides the opportunity to analyze the convection per-

turbations to the storm inflow regions as described in pre-

vious studies (Brooks et al. 1994; Stensrud 1996). Last,

the simulation of a large tornadic supercell from 31 May

(Fig. 1c) is explored. This supercell produced a large, vio-

lent tornadowest of OklahomaCity (Bluestein et al. 2015).

The next section describes the experiment design and

data assimilation techniques used to properly create the

model state. Section 3 presents the results of ensemble

sensitivity analysis applied to the convective-scale in-

cluding convection–environment feedbacks, and a

discussion is presented in section 4.

FIG. 1. Hourly observed reflectivity 30-dBZ contours for (a) 2100 UTC (black), 2200 UTC

(blue), and 2300 UTC (green) 29 May; (b) 1900 UTC (black), 2000 UTC (blue), 2100 UTC

(green), and 2200 UTC (gray) 30 May; (c) 2200 UTC (black), 2300 UTC (blue) 31 May and

0000 UTC (green), 0100 UTC (gray) 1 Jun. Circles denote upsondes released duringMPEX by

color designated team [adapted from Kerr et al. (2017)].
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2. Experimental design

Three case studies are simulated using an ensemble

design known as the National Severe Storms Labora-

tory (NSSL) Experimental Warn-on-Forecast System

for ensembles (NEWS-e) as described in Wheatley

et al. (2015), Jones et al. (2016), and Kerr et al. (2017).

This setup uses the Advanced Research version of

WRF (WRF-ARW), version 3.4.1 (Skamarock et al.

2008), where a one-way nested domain is placed over

portions of Texas, Oklahoma, and Kansas to encom-

pass all events of interest in this 3-day sequence

(Fig. 2). The inner, storm-scale domain has a horizontal

grid spacing of 3 km whereas the outer, mesoscale do-

main (CONUS) has a grid spacing of 15 km. Both do-

mains have 51 vertical layers from the surface to

10 hPa, and the low-level storm inflow layer has a

300–500-m vertical spacing. The ensemble is initialized

at 0000 UTC each day using a downscaled 18-member

Global Ensemble Forecast System (GEFS). The outer

domain boundary conditions are created using the

GEFS, while the outer domain provides the boundary

conditions for the inner domain.

Ensemble members are created using the methodology

outlined byWheatley et al. (2015) where a combination of

18 GEFS members and 18 physics combinations of plan-

etary boundary layer (PBL), longwave and shortwave

radiation, and convective (outer domain only) pa-

rameterization schemes yield 36 ensemble members

(Table 1). All ensemble members utilize the Thompson

et al. (2008) microphysics scheme. Members 1–18 are

initialized with the same numerical GEFS member and

are run with the same numerical physics combination

from Table 1. Members 19–36 are initialized with the

same 18 GEFS members in descending order (mem-

ber 19 with GEFS member 18, member 20 with GEFS

member 17, etc.) while running the physics combina-

tions in ascending order (member 19 with combination

1, member 20 with combination 2, etc.) Given there are

18 unique initial conditions at 0000 UTC (given only

18 GEFS members), the model is integrated 1 h for-

ward to create 36 unique initial conditions. Further

details of this approach can be found in Wheatley et al.

(2015), Jones et al. (2016), and Kerr et al. (2017).

a. Mesoscale data assimilation

At 0100 UTC, mesoscale data assimilation begins with

hourly update cycles. Temperature, dewpoint, pressure,

and zonal andmeridionalwind component observations are

provided by the NOAAMeteorological Assimilation Data

Ingest System (MADIS) and assimilated using an ensemble

adjustment Kalman filter (EAKF; Anderson 2001) avail-

able via the Data Assimilation Research Testbed (DART;

FIG. 2. Outer model domain (CONUS; 15-km grid spacing) and nested, convection-resolving domain (3-km grid

spacing) that includes KS, OK, and the TX Panhandle [adapted from Kerr et al. (2017)].
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Anderson et al. 2009). Observations include METAR and

marine surface stations, the Aircraft Communications

Addressing andReportingSystem (ACARS), rawinsondes,

and data from the MADIS and Oklahoma Mesonets.

The Gaspari and Cohn (1999) Gaussian-like locali-

zation function is applied to all assimilated observations.

Nonmesonet mesoscale observations have a horizontal

localization cutoff of approximately 458 km with a ver-

tical localization cutoff of 8 km [as in Wheatley et al.

(2012, 2015)]. The horizontal localization of mesonet

observations is approximately 60 km [as in Sobash and

Stensrud (2015), Wheatley et al. (2015), and Jones et al.

(2016)]. Spatial and temporal prior adaptive inflation is

used to maintain ensemble spread (Anderson 2007).

b. Storm-scale data assimilation

Storm-scale data assimilation begins at a time based

on each day’s convective event (Table 2). Radar data

(level II radar reflectivity and radial velocity; radars

listed in Table 2) are assimilated every 15min with

MADIS mesonet, Oklahoma Mesonet, and conven-

tional rawinsonde observations. Radar observations

have an 18-km horizontal localization cutoff and 6-km

vertical cutoff (Yussouf et al. 2013; Wheatley et al. 2014,

2015; Jones et al. 2016). Surface and conventional ra-

winsonde observations have the identical localization

specifications as used in mesoscale data assimilation.

The frequent storm-scale assimilation only updates the

inner domain while the parent domain serves as lateral

boundary conditions without data assimilation updates.

Radar reflectivity observations less than 10 dBZ are set

to 0dBZ and considered clear-air reflectivity observa-

tions. Radial velocity observations are only included

in the assimilation if they are collocated with radar

reflectivity observations exceeding or equal to 20dBZ.

Following the quality control of radar observations,

these data are objectively analyzed to a 6-km Cartesian

grid (Cressman 1959) by the Observation Processing

and Wind Synthesis (OPAWS; Majcen et al. 2008)

software (Wheatley et al. 2015; Jones et al. 2016). Radar

observations obtained within a 15-min window centered

on the analysis time are assimilated; observation errors

of 5 dBZ for radar reflectivity and 3ms21 for radial

velocity are assumed uniform and are held constant

(Dowell et al. 2004; Aksoy et al. 2009; Yussouf et al.

2013; Wheatley et al. 2015; Jones et al. 2016). Convec-

tion spinup is aided by the additive noise technique

developed by Dowell and Wicker (2009). Temperature,

dewpoint, and horizontal wind field random perturba-

tions are added to each member at grid points where the

reflectivity innovations are .10dBZ and reflectivity

observations are .25dBZ (Sobash and Wicker 2015).

The storm-scale data assimilation cycling continues

until the observed storms decay. Ensemble analyses

are available every 15min, and a time during the

mature phase of each storm is chosen to provide the

initial conditions for a 1- to 2-h ensemble forecast that

is needed for the ensemble sensitivity analysis described

in section 2c.

c. Ensemble sensitivity analysis

Ensemble sensitivity analysis (ESA) is a technique

that uses a group of ensemble forecasts to reveal de-

pendencies of forecast metrics onmodel variables (same

or different) at an earlier time, including the model

initial conditions (Ancell and Hakim 2007; Hakim and

Torn 2008; Torn and Hakim 2008). This method is a

simple linear regression derived from the response of a

given scalar forecast metric to an initial condition vari-

able at a specified grid point. The sensitivity is defined by

›J

›x
5
cov(J, x)

var(x)
,

where J is a scalar forecast metric, x is an initial condi-

tion variable at a grid point, and cov is covariance and

TABLE 1. Physics options applied to 18 GEFS members. This set

of physics options also is applied to these same 18 GEFS members

in reverse order to create members 19–36 (e.g., member 19 is ini-

tialized with GEFS member 18 but has physics option 1 applied).

The Thompson microphysics and RAP land surface parameteri-

zation is applied to all members. PBL schemes include the Yonsei

University (YSU), Mellor–Yamada–Janjić (MYJ), and Mellor–

Yamada–Nakanishi–Niino (MYNN) schemes. Shortwave (SW)

and longwave (LW) radiation schemes include the Dudhia short-

wave scheme, Rapid Radiative Transfer Model (RRTM) short-

wave scheme, and the Rapid Radiative Transfer Model for GCMs

(RRTMG) shortwave and longwave schemes [adapted from

Wheatley et al. (2015) and Kerr et al. (2017)].

Member PBL SW radiation LW radiation Cumulus

1 YSU Dudhia RRTM Kain–Fritsch

2 YSU RRTMG RRTMG Kain–Fritsch

3 MYJ Dudhia RRTM Kain–Fritsch

4 MYJ RRTMG RRTMG Kain–Fritsch

5 MYNN Dudhia RRTM Kain–Fritsch

6 MYNN RRTMG RRTMG Kain–Fritsch

7 YSU Dudhia RRTM Grell

8 YSU RRTMG RRTMG Grell

9 MYJ Dudhia RRTM Grell

10 MYJ RRTMG RRTMG Grell

11 MYNN Dudhia RRTM Grell

12 MYNN RRTMG RRTMG Grell

13 YSU Dudhia RRTM Tiedtke

14 YSU RRTMG RRTMG Tiedtke

15 MYJ Dudhia RRTM Tiedtke

16 MYJ RRTMG RRTMG Tiedtke

17 MYNN Dudhia RRTM Tiedtke

18 MYNN RRTMG RRTMG Tiedtke
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var is variance of the given variables, respectively. It

should be noted that sensitivity magnitudes increase if

initial condition ensemble variance decreases. This

caveat reinforces the need for the ensemble to not be

underdispersive. Wheatley et al. (2015) present the

dispersiveness of this ensemble.

ESA has recently been applied on the mesoscale to

examine sensitivities in convection forecasts (Bednarczyk

and Ancell 2015; Torn and Romine 2015; Weisman et al.

2015; Hill et al. 2016; Romine et al. 2016; Berman et al.

2017; Torn et al. 2017). In these studies, ESA is applied to

convection-related variables, such as reflectivity, vertical

velocity, and precipitation, within designated response

regions. For example, Bednarczyk and Ancell (2015) and

Hill et al. (2016) show convection to be sensitive to up-

stream, synoptic-scale features in both the upper and lower

troposphere. Torn and Romine (2015), Weisman et al.

(2015), and Romine et al. (2016) use ESA onMPEX cases

where dropsonde observations were targeted in regions of

high sensitivity. Results from Romine et al. (2016) suggest

that targeted observations of upstream features helps

improve convection forecasts in the 12–24-h range.

This study instead applies ESA to short-term (1–2h)

forecasts of a convective system on 29 May and to

individual supercell thunderstorms on 30 and 31 May

2013. The model error associated with this multiphysics

ensemble does not interfere with the validity of the

results presented, as the initial condition variability

dominates on these time scales. Multiple scatterplot

examples show that forecast–initial condition relation-

ships qualitatively hold for this ensemble’s three PBL

schemes (Fig. 3). Although the regression slopes differ

among PBL schemes, slope signs are consistent and

generally agree with the entire ensemble regression

slope even with increased sampling error (12 members

per scheme). These four examples are averages of 50

environment (nonprecipitating) grid points in close

proximity of one another (within a 50-km radius). Kerr

et al. (2017) show that model error arising from varying

radiation schemes is less influential in this ensemble.

The sensitivity of storm-related forecast metrics,

including storm-averaged reflectivity, rainfall, and up-

draft helicity, to environmental initial condition variables,

including moisture and vertical wind shear, is investigated.

Updraft helicity (UH) is the product of updraft velocity

and vorticity defined over specific vertical layers (Kain

et al. 2008), so when UH is calculated over the 2–5-km

layer it is used to identify midlevel mesocyclones in model

output, a characteristic of supercell storms. When UH is

calculated over the 0–1-km layer, it is a measure of low-

level mesocyclone intensity.

To help counteract potential ensemble sampling errors,

a one-sample t test is applied to determine if linear sensi-

tivities are statistically significant. The one-sample t test

is applied to the 36-sample distribution regression slope

coefficient estimate using a 95% confidence interval

(Wilks 2011, section 7.2.5). If this requirement is met,

then the null hypothesis that changes to an initial condi-

tion do not affect a forecast metric can be rejected.

When a relationship between an initial condition variable

and forecast metric is highly nonlinear, the sensitivity

does not pass the significance test since the standard

error–slope ratio is too large. In this study, sensitivity

values are outlined where the null hypothesis is not re-

jected. However, the physical phenomena and spatial

scales in this study are subject to nonlinear relationships,

and many sensitivities that do not pass the statistical sig-

nificance test are still physically meaningful.

Environmental features that affect convection evolution

on the time scale of 1–2h are generally in close proximity

to convective storms (estimated using an advective time

scale to be 100km via an idealized supercell simulation,

not shown). A sensitivity radius, equal to the advective

time scale, is used and placed on the center the main up-

draft of the supercells in both cases studied. Values of

sensitivity are set to zero beyond the sensitivity radius as

spurious sensitivities can arise because of ensemble sam-

pling error, a common issue in ensemble data assimilation

and forecasting (e.g., Wheatley et al. 2015; Jones et al.

2016; Kerr et al. 2017). A sensitivity radius is not applied to

the 29 May case given the size of the convective system

relative to the display window for this case.

d. Convective perturbations

Convective environments are known to be highly in-

homogeneous over small spatial scales (Cortinas and

TABLE 2. Description of the convective events each day. The start times of radar data assimilation are listed with the corresponding

radars that collected the data including Dodge City, KS (KDDC); Amarillo, TX (KAMA); Vance Air Force Base, OK (KVNX);

Oklahoma City, OK (KTLX); and Frederick, OK (KFDR).

Date Event Radars Start time

29 May Texas Panhandle; western Oklahoma bow echo and

bookend vortex

KAMA, KFDR, KDDC, KVNX 1700 UTC

30 May Central Oklahoma nontornadic supercell KTLX, KFDR 1700 UTC

31 May Central Oklahoma tornadic supercell KTLX, KFDR, KVNX 2100 UTC
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Stensrud 1995; Wagner et al. 2008; Kerr et al. 2017).

Therefore, the environment can drastically change

over a time period spanning a few hours even without

the presence of convection. To discern whether short-term

changes in the environment are convectively induced, a

method is developed using the outer, mesoscale domain

where convection is parameterized. In these case studies,

parameterized convection on the outer domain does not

activate in the regions of targeted convection, such that

the effects of shallow and deep convection are only seen

in the model output on the inner domain (Figs. 4a,b).

The outer domain model state is linearly interpolated

in the horizontal to the inner domain Dx 5 3 km grid.

The temporal changes in the fields on the downscaled

outer domain are assumed to represent the evolution

of the environment without convection. For the inner

FIG. 3. Regression slopes of forecast metrics and inflow initial conditions averaged over 50 grid points. Color designates member PBL

scheme [YSU (red), MYJ (blue), MYNN (green), all (black)] for (a) 29May composite reflectivity and 850-hPa water vapor mixing ratio,

(b) 30May 2–5-km updraft helicity and 850-hPa wind speed, (c) 30May 2–5-km updraft helicity and 850-hPa temperature, and (d) 31May

2–5-km updraft helicity and 0–6-km vertical wind shear.
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domain, the temporal changes represent the total

change in the model state over a designated time period,

including convectively induced changes as well as other

environmental changes. To quantitatively determine the

environmental features that are a result of convection,

the temporal difference in the downscaled outer domain

is subtracted from the temporal difference of the inner,

convection-allowing domain over a specified time pe-

riod (30min, 1 h, etc.) that is the same for both domains.

This difference quantifies how the mesoscale environ-

ment has been altered by nearby convection, as the en-

vironmental changes on the outer domain are assumed

to be nonconvective perturbations. Results from 31May

2013 show that the storm increases the 0–6-km vertical

wind shear in only 1 h, but particularly in the inflow re-

gions to the south and east of the target supercell

(Fig. 4c). The differences between the outer and inner

domain 0–6-km vertical wind shear changes are a factor

of 4 in maximum magnitude. Although this method is

imperfect given interpolation and model errors, the

method crudely removes qualitative temporal envi-

ronmental changes not related to convection for the

purposes of this study.

3. Results

For the three convective events selected (29 May,

30 May, 31 May), 3-km CAM ensemble forecasts of

1–2 h in length are created for each event. As described

above, these forecasts are initialized from ensemble

analyses several hours after convection initiation when

the convection is well depicted by the ensemble mem-

bers. This reduces the impacts of model error arising

from the multiphysics ensemble, which are more

prominent during convection initiation (e.g., Hohenegger

et al. 2006; Leoncini et al. 2010; Keil et al. 2014;

FIG. 4. The 1-h changes in ensemble mean analysis 0–6-km vertical wind shear from 2130 to 2230 UTC

31 May 2013 (filled) and low-level reflectivity analysis (black contours): (a) outer mesoscale domain, (b) inner

storm-scale domain, and (c) difference between outer and inner domains, revealing changes induced by

convection.
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Flack et al. 2018). As shown by Kerr et al. (2017), these

ensemble analyses accurately depict ongoing convection

and its feedbacks on the environment. This permits the

exploration of deep convection effects on the environ-

ment using the ESA approach. A number of forecast

metrics have been evaluated for each of the three

MPEX cases; only the metrics with the notable sensi-

tivities are reported below.

a. 29 May ESA

Several initial condition variables relevant to an MCS

are used in an ESA with a forecast metric (listed in

Table 3). All forecasts on 29 May are initialized at

2130 UTC to allow storm spinup via radar data assimi-

lation that begins at 1700 UTC (Table 2). Results in-

dicate that the sensitivity of storm-averaged composite

reflectivity (.20 dBZ) to 850-hPa wind speed reveals

a negative sensitivity just east of the initial condition

storm location (Figs. 5a,b). Magnitudes of sensitivity

exceed 0.4 dBZ (m s21)21 in this region for both a 1-h

forecast (Fig. 5a) and a 2-h forecast (Fig. 5b). These

negative sensitivities indicate that slower 850-hPa wind

speeds in these areas (which are generally downstream

of the initial condition storm location) result in higher

storm-averaged reflectivity. From the model data, it is

evident this is a result of outflow strength’s (speed) re-

lationship with the environmental wind profile. In en-

semble members with lower forecast reflectivity, the

850-hPa downstream wind has a westerly component

while the wind in members with higher reflectivity has

an easterly component (not shown). Members with

deeper inflow layers also have deeper MCS outflow (not

shown). In this case, members with a deeper inflow layer

tend to have slower winds at 850 hPa. This is likely case

specific and should not be generalized. The positive

sensitivities behind the dryline indicate that a faster

moving dryline will result in higher reflectivity, likely

due to increased lift.

An initial condition difference between ensemble

members with the highest and lowest forecast response

can support sensitivity results and help distinguish

dynamical features from statistical noise. The 850-hPa

wind initial condition difference at statistically signifi-

cant sensitivity grid points is negative in some areas

downstream of the initial MCS position (Figs. 6a,b).

There are also strong positive differences along the

leading edge of the MCS, meaning faster outflow is

associated with higher storm reflectivity by increasing

convergence.

Forecast average reflectivity is positively sensitive to

initial condition 850-hPa temperature (Figs. 5c,d). We

hypothesize that warmer low-level temperatures lead to

larger CAPE and higher updraft velocities, resulting in

higher reflectivity. Initial condition differences between

the highest and lowest forecast response show a similar

relationship (Figs. 6c,d).

Reflectivity sensitivity to 850-hPa water vapor mixing

ratio also shows a positive sensitivity within the inflow

region to the east and southeast of the MCS (Figs. 5e,f).

This feature is also evident in the member differences

(Figs. 6e,f). Physically, ingested air with higher moisture

content should yield larger reflectivity values since

moisture increases instability resulting in storms with

faster updrafts and larger hail. As the 850-hPa level is

just above the boundary layer, the positive sensitivities

to temperature and moisture suggest that larger CAPE

to the east of the storm yields larger reflectivity. This is

intuitive given that instability affects updraft velocity.

However, the method used here is not appropriate to

determine this given the nonlinear relationship between

CAPE and reflectivity (not shown). The negative sen-

sitivities to the west behind the dryline suggest a drier

western air mass will also produce more lift as it

protrudes into the moist air mass. This affects storm cov-

erage, thus affecting average composite reflectivity.

TABLE 3. List of scalar forecast metrics (J) and initial condition variables (x) for which ESA is applied on each day.

Day Forecast metric J Initial condition x

29 May Storm-averaged composite radar reflectivity 850-hPa wind speed

850-hPa temperature

850-hPa water vapor mixing ratio

30 May Storm-averaged composite radar reflectivity 850-hPa water vapor mixing ratio

Storm-averaged 2–5-km UH 0–6-km wind shear

850-hPa temperature

31 May Storm-averaged composite radar reflectivity 850-hPa water vapor mixing ratio

Storm-averaged accumulated rainfall 850-hPa water vapor mixing ratio

Storm-averaged 2–5-km UH 0–6-km wind shear

Storm-averaged 0–1-km UH 0–1-km wind shear
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FIG. 5. The 29 May target storm averaged composite reflectivity (.20 dBZ) sensitivity to initial condition 850-hPa wind speed

indBZ (m s21)21, ensemble mean forecasted reflectivity (20 dBZ; black contour), dryline position (green curve), and ensemble mean initial

condition reflectivity (20 dBZ; gray contour) and 850-hPawind vectors for forecast times (a) 1 h, valid at 2230UTC; and (b) 2 h, valid at 2330UTC.

Next, target storm averaged composite reflectivity (.20dBZ) sensitivity to initial condition 850-hPa temperature in dBZK21 for forecast times

(c) 1 h, valid at 2230 UTC; and (d) 2 h, valid at 2330 UTC. Last, target storm averaged composite reflectivity (.20dBZ) sensitivity to initial

condition 850-hPa water vapor mixing ratio in dBZ (g kg21)21 for forecast times (e) 1 h, valid at 2230 UTC; and (f) 2 h, valid at 2330 UTC.
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FIG. 6. The 29 May initial condition 850-hPa wind speed difference of members with highest and lowest composite reflectivity forecast

response (m s21) at statistically significant ESA points, ensemble mean forecasted reflectivity (20 dBZ; black contour), and ensemble mean

initial condition reflectivity (20 dBZ; gray contour) for forecast times (a) 1 h, valid at 2230 UTC; and (b) 2 h, valid at 2330 UTC. Next, initial

condition 850-hPa temperature difference (K) for forecast times (c) 1 h, valid at 2230UTC; and (d) 2 h, valid at 2330UTC.Last, initial condition

850-hPa water vapor mixing ratio difference in (g kg21) for forecast times (e) 1 h, valid at 2230 UTC; and (f) 2 h, valid at 2330 UTC.
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b. 30 May ESA

The analysis is next applied to the nontornadic supercell in

central Oklahoma on 30 May. For this case, 30- and 60-min

forecasts are initialized at 1900 UTC, two hours after

convection initiation. Results suggest that storm-

averaged composite reflectivity is positively sensi-

tive to low-level moisture within the inflow region and

immediately downstream (850 hPa; Figs. 7a,b), most

notably for a 30-min forecast. Values are approxi-

mately 1 dBZ (g kg21)21 in most locations. Ensemble

member differences of 850-hPa water vapor mixing

ratio (Figs. 7c,d) agree with the positive sensitivity fields

in the near-inflow and downstream regions. As in the

29 May case, higher low-level moisture content pro-

duces higher reflectivity.

Since one characteristic of a supercell is a persistent,

rotating updraft, ESA is applied to the storm 2–5-km

UH. For this particular supercell and model grid spac-

ing, ensemble mean UH values are quite small, as some

ensemble members only have a maximum UH of

5–10m2 s22 while the range of average UH within the

storm across the ensemble is approximately 45m2 s22.

Forecasted storm-averaged UH is found to be sensitive

to initial condition 0–6-km bulk vertical wind shear (here-

after SHR06; Figs. 8a,b and 9a,b). Positive sensitivity spans

the storm inflow environment to the south and southeast

of the storm for both 30- and 60-min forecasts where

FIG. 7. The 30 May target storm averaged composite reflectivity (.20 dBZ) sensitivity (statistically significant outlined) to initial

condition 850-hPa water vapor mixing ratio in dBZ (g kg21)21, ensemble mean forecasted reflectivity (20 dBZ; black contour), and

ensemble mean initial condition reflectivity (20 dBZ; gray contour) and low-level wind vectors for forecast times (a) 30min, valid at

1930 UTC; and (b) 1 h, valid at 2000 UTC. Initial condition 850-hPa water vapor mixing ratio difference of members with highest and

lowest composite reflectivity forecast response (g kg21) at statistically significant ESA points for forecast times (c) 30min, valid at

1930 UTC; and (d) 1 h, valid at 2000 UTC. Sensitivity radius is applied.
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FIG. 8. The 30 May target storm averaged 2–5-km UH (.5m2 s22) sensitivity (statistically significant outlined) to initial condition

SHR06 inm2 s22 (m s21)21, ensemble mean forecasted reflectivity (20 dBZ; black contour), 2–5-km UH (5m2 s22; green contour), and

ensemble mean initial condition reflectivity (20 dBZ; gray contour) for forecast times (a) 30min, valid at 1930 UTC; and (b) 1 h, valid at

2000 UTC. Next, target storm averaged 2–5-kmUH (.5m2 s22) sensitivity to initial condition 850-hPa wind speed inm2 s22 (m s21)21 for

forecast times (c) 30min, valid at 1930 UTC; and (d) 1 h, valid at 2000 UTC. Last, target storm averaged 2–5-km UH (.5m2 s22)

sensitivity to initial condition 850-hPa temperature m2 s22 K21 for forecast times (e) 30min, valid at 1930 UTC; and (f) 1 h, valid at

2000 UTC. Sensitivity radius is applied.
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FIG. 9. The 30May initial condition SHR06 difference of members with highest and lowest 2–5-kmUH forecast response (ms21) at statistically

significant ESA points, ensemble mean forecasted reflectivity (20dBZ; black contour), 2–5-kmUH (5m2 s22; green contour), and ensemble mean

initial condition reflectivity (20dBZ; gray contour) for forecast times (a) 30min, valid at 1930 UTC; and (b) 1h, valid at 2000 UTC. Next, initial

condition850-hPawind speeddifference (ms21) for forecast times (c) 30min, valid at 1930UTC;and (d)1h, validat 2000UTC.Last, initial condition

850-hPa temperature difference (K) for forecast times (e) 30min, valid at 1930 UTC; and (f) 1h, valid at 2000 UTC. Sensitivity radius is applied.
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sensitivity values exceed 7.5m2 s22 (m s21)21. This sug-

gests that larger SHR06 values within the inflow

region yield large averageUH for this supercell, perhaps

even doubling the UH magnitude if SHR06 is increased

by just 1m s21. An environment of higher inflow vertical

wind shear should increase the vorticity of an updraft,

thus increasing UH.

Storm UH is also positively sensitive to 850-hPa wind

speed, especially within the inflow region for a 60-min

forecast where UH has a higher magnitude (Figs. 8c,d

and 9c,d). This is more evident for a 60-min forecast since

sensitivities are weak in a 30-min forecast. In this 60-min

forecast, sensitivity magnitudes exceed 5m2s22 (ms21)21

within the inflow region. This translates to stronger

storm-relative inflow inducing much larger UH. Faster

inflow wind speed is directly related to updraft velocity

and stretching, where stronger updrafts produce larger

UH. The metric also is positively sensitive to 850-hPa

temperature within the inflow region (Figs. 8e,f and 9e,f).

The results suggest that warmer inflow winds increase

updraft speed via changes to updraft parcel buoyancy.

There would also be increased baroclinicity normal to

the storm motion that may increase UH. In summary,

UH will increase if low-level inflow winds are faster,

air is warmer, and/or SHR06 is greater. Member

differences also reflect UH dependency on these

environmental variables. The member with larger

storm UH has faster and warmer inflow along with

greater environmental shear.

c. 31 May ESA

As in the 29 and 30 May cases, positive sensitivity of

forecast reflectivity to 850-hPa water vapor mixing

ratio is prevalent within the inflow region to the

southeast of the supercell in the 30-, 60-, and 90-min

forecasts (Figs. 10a–c). Negative sensitivities exist to

the west behind the boundary (evident through the

wind vector analysis). These patterns are also present

in the ensemble member differences (Figs. 11a–c),

although the difference for a 90-min lead time does

not show a positive relationship in the inflow region.

Since the 31 May event produced significant flash

flooding, ESA is applied to forecast accumulated

rainfall. This reveals positive sensitivity to low-level

water vapor mixing ratio within the storm inflow region

for a 60- and 90-min forecast (Figs. 10e,f and 11e,f).

Storm-ingested water vapor originating from the moist

air mass to the east of the storm is seen to directly

impact rainfall amounts. These sensitivity values are

1.6–2.4mm (gkg21)21. Overall, these results are similar

in structure to the reflectivity sensitivities, which is to

be expected.

FIG. 10. The 31 May target storm averaged composite reflectivity (.20 dBZ) sensitivity (statistically significant outlined) to initial

condition 850-hPa water vapor mixing ratio in dBZ (g kg21)21, ensemble mean forecasted reflectivity (20 dBZ; black contour), and

ensemble mean initial condition reflectivity (20 dBZ; gray contour) and low-level wind vectors for forecast times (a) 30min, valid at

2300UTC; (b) 1 h, valid at 2330UTC; and (c) 90min, valid at 0000UTC 1 Jun.Also, target storm averaged accumulated rainfall (.10mm)

sensitivity to initial condition 850-hPa water vapor mixing ratio in mm (g kg21)21 with accumulated rainfall (10mm; green contour) for

forecast times (d) 30min, valid at 2300 UTC; (e) 1 h, valid at 2330 UTC; and (f) 90min, valid at 0000 UTC 1 Jun. Sensitivity radius

is applied.
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The ESA technique is also applied to the storm 2–5-km

UHbeginningwith SHR06 (Fig. 12), but using a largerUH

threshold (75m2s22) than for the 30 May event (5m2 s22)

to removeUHvalues not associated with themain updraft

in this intense storm. Broad areas of positive sensitivity

exists within the near inflow region for 30- and 60-min

forecasts (Figs. 12a,b,d,e). The sensitivity magnitudes de-

crease for a 90-min forecast (Figs. 12c,f). As in the 30May

case, larger 0–6-km inflow environmental wind shear in-

creases UH. Sobash et al. (2016) show through verification

that 2–5-kmUH is a poor surrogate for tornado prediction

since it is a measure of midlevel updraft rotation, while

low-level rotation provides more insight into tornado

probabilities. Thus, 0–1-kmUH is also chosen as a forecast

metric. The sensitivity of 0–1-km UH to 0–1-km vertical

wind shear (hereafter SHR01) indicates that 0–1-kmUH is

positively sensitive to SHR01 for 15- and 30-min forecasts

with values exceeding 1m2s22 (ms21)21 for the 30-min

forecast (Fig. 13). The positive sensitivities are found in the

inflow region close to the storm. Increased low-level shear

within the inflow region increases low-level UH.

d. Sensitivity to vertical wind shear feedbacks

Brooks et al. (1994) demonstrate how the vertical wind

profile is modified within the inflow of an idealized su-

percell simulation out to distances of several tens of

kilometers. In the present study, convective perturbations

to SHR06 in supercell inflow regions are analyzed.

Changes in vertical wind shear due to convective feed-

backs on 30 May indicate that wind shear is enhanced to

the southeast of the target supercell in central Oklahoma

by magnitudes less than 10ms21, while nontargeted

convection to the north also impacts the mesoscale envi-

ronment in other areas (Fig. 14). The target supercell’s

shear enhancement does not extend very far from the

storm. Shear is also enhanced, and by greater magnitudes

(;10–12ms21), within the lingering cold pool of the tar-

geted supercell storm. For the 31 May case, however, the

enhancement of inflow SHR06 and SHR01 to the south

and southeast of the storm is notable in both magnitude

and areal extent (Fig. 15); the inflow SHR06 increases by

15–20ms21 over a 60-min period and extends outward

from the storm (Fig. 15b). Inflow SHR01 increases as well

within the inflow region (Figs. 15c,d). These results overall

suggest environmental shear perturbations are sensitive to

supercell updraft strength and consequential storm size.

Like many previous studies, this study shows that

vertical wind shear is convectively enhanced within the

inflow region of supercells. Since UH has been shown to

be positively sensitive to shear within the inflow region,

these short-term impacts on the environment caused

by convection could be an important feedback to

FIG. 11. The 31 May initial condition 850-hPa water vapor mixing ratio difference of members with the highest and lowest composite

reflectivity forecast response (g kg21) at statistically significant ESA points, ensemble mean forecasted reflectivity (20 dBZ; black con-

tour), and ensemble mean initial condition reflectivity (20 dBZ; gray contour) for forecast times (a) 30min, valid at 2300 UTC; (b) 1 h,

valid at 2330UTC; and (c) 90min, valid at 0000UTC 1 Jun.Also, initial condition 850-hPawater vapormixing ratio difference ofmembers

with highest and lowest accumulated rainfall forecast response (g kg21) with accumulated rainfall (10mm; green contour) for forecast

times (d) 30min, valid at 2300 UTC; (e) 1 h, valid at 2330 UTC; and (f) 90min, valid at 0000 UTC 1 Jun. Sensitivity radius is applied.
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convection evolution. Thus, ESA is once again applied

to UH, however, the ‘‘initial condition’’ x is the change

in wind shear over a 1-h time period. This change in

wind shear is determined using the method described in

section 2d. Using this change metric, positive (negative)

sensitivities represent scenarios where short-term in-

creases (decreases) in vertical wind shear caused by the

supercell storm lead to larger storm UH in the future.

Statistical significance testing is less useful here given

the nonlinear relationship between convective pertur-

bations and forecast metrics; however, the linear re-

sponse qualitatively represents the correlations.

Beginning with the 30 May case, results indicate that

2–5-km UH is positively sensitive to the 60-min storm-

induced changes in SHR06 (1800–1900 UTC) in a small

area to the south and west of the supercell for the 30-min

forecast (Fig. 16), with the strongest sensitivity for the

60-min forecast. This suggests that the storm-induced

increases in SHR06 have an effect on future convection

evolution, meaning some positive feedback exists be-

tween this storm and the environment, and that this

feedback appears to occur over a 60-min time period.

The 31 May results show a similar feedback pattern.

Results show that there is only a weak area of positive

sensitivity to 2–5-km UH from the 60-min storm-

induced change in SHR06 for the 30-min forecast

directly south of the updraft (Fig. 17a), with a much

larger and stronger region of positive sensitivity for the

60-min forecast (2130–2230 UTC). Both forecast times

have these positive sensitivities to the south of the storm

in the inflow region (Fig. 17). This positive sensitivity

within the inflow regions again supports the idea of

positive feedback between the storm and its nearby

environment, with an inherent time scale for how long it

takes the environmental changes to feed back and

influence supercell structure. This feedback time scale

appears to be around 60min. This feedback is likely

more prevalent on 31 May because the storm perturbs

the environment to a greater extent than seen on

30 May. Positive feedback on low-level mesocyclone

strength, as defined by the 0–1-km UH, is also present

where inflow SHR01 is enhanced by convection

(Fig. 18), but the time scale is shorter. This feedback is

best seen for a 30-min forecast, with the 15- and 45-min

forecasts showing weaker sensitivity. Thus, the supercell

low-level rotation is positively sensitive to enhance-

ments of SHR01 within the inflow region.

4. Discussion and conclusions

The results of this study reveal how convection evo-

lution is dependent on the surrounding near-storm

FIG. 12. The 31 May target storm averaged 2–5-km UH (.75m2 s22) sensitivity (statistically significant outlined) to initial condition

SHR06 inm2 s22 (m s21)21, ensemble mean forecasted reflectivity (20 dBZ; black contour), 2–5-km UH (75m2 s22; green contour), and

ensemble mean initial condition reflectivity (20 dBZ; gray contour) for forecast times (a) 30min, valid at 2300 UTC; (b) 1 h, valid at

2330 UTC; and (c) 90min, valid at 0000 UTC. Also, initial condition SHR06 difference of members with highest and lowest 2–5-km UH

forecast response (m s21) at statistically significant ESA points for forecast times (d) 30min, valid at 2300UTC; (e) 1 h, valid at 2330UTC;

and (f) 90min, valid at 0000 UTC 1 Jun. Sensitivity radius is applied.
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environment. Many relationships are presented be-

tween storm forecast metrics and environmental vari-

ables, and similarities are seen among the three cases.

Reflectivity and rainfall accumulation are dependent on

low-level environmental moisture, particularly within

the inflow region. Higher environmental water vapor

content results in higher reflectivity and rainfall accu-

mulation. Along with low-level humidity, low-level

temperature also affects the storms by increasing lifted

parcel buoyancy. Reflectivity and updraft rotation are

both enhanced by warmer low-level temperatures, likely

due to larger parcel buoyancy producing a stronger

updraft. Low-level inflowwinds impact supercell evolution

by increasing UH intensity via updraft intensification

and stretching. Inflow environmental vertical wind shear

increases updraft helicity in both the nontornadic and

tornadic supercell cases in this study (Figs. 8a,b and

12a–c). Overall, the three cases highlight the influence of

the inflow and downstream environments on convection

evolution for both supercells and convective lines.

A method to investigate storm–environment feed-

backs is presented that indicates positive feedbacks be-

tween supercell thunderstorms and their surrounding

environments. Since vertical wind shear is enhanced

within supercell inflow regions and supercell rotation

is affected by environmental vertical wind shear, the

FIG. 13. The 31 May target storm averaged 0–1-km UH (.5m2 s22) sensitivity (statistically significant outlined) to initial condition

SHR01 in m2 s22 (m s21)21 and ensemble mean forecasted reflectivity (20 dBZ; black contour) and 0–1-km UH (5m2 s22; green

contour) and ensemble mean initial condition reflectivity (20 dBZ; gray contour) for forecast times (a) 15 min, valid at 2245 UTC; and

(b) 30min, valid at 2300 UTC. Also, initial condition SHR01 difference of members with highest and lowest 0–1-km UH forecast

response (m s21) at statistically significant ESA points for forecast times (c) 15 min, valid at 2245 UTC; and (d) 30min, valid at

2300 UTC. Sensitivity radius is applied.
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storm-induced enhancements of wind shear result in

larger storm UH at a later time. Results further suggest

that the time scale for this feedback process is on the

order of an hour. This effect is stronger in the tornadic

supercell of 31 May than the nontornadic supercell of

30 May given the greater magnitude and spatial extent

(;100 km) of vertical wind shear perturbations. A

possible explanation for this difference is outlined by

FIG. 14. The 30 May 2013 ensemble mean analysis SHR06 difference in m s21 from 1800 UTC due to convection

(filled) and low-level reflectivity (20-dBZ intervals) at (a) 1830 and (b) 1900 UTC.

FIG. 15. The 31 May 2013 ensemble mean analysis SHR06 difference in m s21 from 2130 UTC due to convection

(filled) and low-level reflectivity (20-dBZ intervals) at (a) 2200 UTC, (b) 2230 UTC, (c) SHR01 difference at

2200 UTC, and (d) SHR01 difference at 2230 UTC.
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Morrison (2016a,b). Updraft-induced perturbation

horizontal pressure gradient magnitudes are directly

proportional to CAPE. This translates to enhanced

vertical wind shear within the vicinity of convection. The

preconvective environmental CAPE on 31 May is

significantly higher compared to 30 May (;5000 vs

;2000 J kg21; not shown). Thus, greater vertical wind

shear perturbations on 31 May are expected and may

lead to more pronounced storm–environment feed-

backs. This feedback could be a crucial part of meso-

cyclone maintenance and intensity and deserves further

study. Results also suggest a feedback between storm-

induced changes to the 0–1-km vertical wind shear in the

inflow region and low-level mesocyclone strength, which

acts on a time scale of approximately 30min. The shorter

time scale is reasonable, as the storm-induced 0–1-km

wind shear changes occur closer to the storm.While some

of these sensitivities may arise from initial storm strength

since stronger storms will perturb the environment more

and perhaps have larger forecastedUH, this feedback can

be theorized through deductive reasoning: 1) supercells

enhance inflow shear, 2) UH evolution is sensitive to

inflow shear, and 3) UH evolution is sensitive to inflow

shear enhancements.

The ESA results suggest that it is imperative for the

near-storm environment to be reasonably well repre-

sented in CAM initial conditions, especially in regions of

high forecast sensitivity. Model biases for different state

variables, as shown byKerr et al. (2017), can degrade the

accuracy of model initial conditions. Thus, model biases

FIG. 16. The 30 May target storm averaged 2–5-km UH (.5m2 s22) sensitivity (statistically significant outlined)

to initial 1-h storm-induced change of SHR06 inm2 s22 (m s21)21 and ensemble mean forecasted reflectivity

(20 dBZ; black contour) and 2–5-kmUH (5m2 s22; green contour) for forecast times (a) 30min, valid at 1930UTC;

and (b) 1 h, valid at 2000 UTC. Sensitivity radius is applied.

FIG. 17. The 31May target storm averaged 2–5-kmUH (.75m2 s22) sensitivity (statistically significant outlined)

to initial 1-h storm-induced change of SHR06 inm2 s22 (m s21)21 and ensemble mean forecasted reflectivity

(20 dBZ; black contour) and 2–5-km UH (75m2 s22; green contour) for forecast times (a) 30min, valid at

2300 UTC; and (b) 1 h, valid at 2330 UTC. Sensitivity radius is applied.
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in areas of high forecast sensitivity can have nega-

tive effects on forecast accuracy. The following are

potential model biases that may impact forecasts based

on ESA:

1) Underdepicted low-level storm inflow wind speed

could affect supercell UH and multicell reflectivity.

Since supercell UH in these cases is positively

sensitive to inflow wind speed, an underdepiction of

initial condition inflow winds should lead to under-

estimated forecasted UH. For the 29 May MCS

case, the average forecast composite reflectivity is

negatively sensitive to low-level inflow wind speed.

From these results, it is suggested the underdepiction

of inflow winds would produce higher average

MCS reflectivity.

2) Comparison of observed and analysis vertical wind

shear shows the underdepiction of shear within

model analyses caused by the underdepiction of

low-level wind speed (Kerr et al. 2017). UH is

positively sensitive to inflow vertical wind shear

(over varying depths; some not shown) meaning a

negative bias in initial condition wind shear would

produce weaker forecast UH. For low-level rotation,

this underdepiction could be important to tornado

probabilities derived from model proxies.

3) ESA applied to the 29MayMCS shows small areas of

negative sensitivity along the apex of the gust front

for 850-hPa temperature, meaning colder tempera-

tures at these locations are associated with higher

reflectivity values. Deeper cold pools would cause

their propagation speed to increase, thus resulting in

more lift along the gust front.

These results from several ESAs using various fore-

cast metrics and initial condition variables show

clearly that low-level environmental features affect

short-term convection evolution. Targeted low-level

observations (e.g., unmanned aircraft systems) near

convective storms could improve short-term predictions

of convection evolution. Clear-air radial velocity ob-

servations of near-storm environments may also be

beneficial to short-term prediction.

In summary, ESA has been shown to be an effective

tool when applied on the storm scale to reveal storm–

environment dependencies and feedbacks. Results

suggest that ESA must be applied to very short-term

forecasts for the linear relationship assumption be-

tween initial condition variables and forecast metrics

to reveal physical connections. Generally, in this

study, the larger the forecasted convective storm, the

longer the lead times in which ESA can be reliably

applied. Applying ESA to longer-term forecasts, such

as 3–6 h, for individual storms may not yield mean-

ingful results as the linear assumption fails. There are

also limitations at the time scales presented given the

necessary linear assumption. Some sensitivity fields

have noisy appearances likely owing to nonlinear re-

lationships between environmental and storm vari-

ables. Polynomial regression techniques should be

utilized in future studies to improve storm-scale sen-

sitivity analyses. Other future work should include

more supercell case studies of various sizes and in-

tensities to further explore storm–environment feed-

backs for multiple variables. Since convective events

rapidly evolve and require nowcasting, forecasters

could use sensitivities to environmental initial condi-

tions coupled with observations within sensitive re-

gions to weight the ensemble member forecasts

(Ancell 2016).
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FIG. 18. The 31 May target storm averaged 0–1-km UH (.5m2 s22) sensitivity (statistically significant outlined) to initial 1-h storm-

induced change of SHR01 inm2 s22 (m s21)21 and ensemble mean forecasted reflectivity (20 dBZ; black contour) and 0–1-km UH

(5m2 s22; green contour) for forecast times (a) 15min, valid at 2245UTC; (b) 30min, valid at 2300UTC; and (c) 45min, valid at 2315UTC.

Sensitivity radius is applied.
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